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I. INTRODUCTION 

A. Spectroscopic Profiling Technology 

Spectroscopic profiling technology has been widely used by 

both manufacturers and governments to analyze and monitor 

the physio-chemical property of materials and products. Among 

these spectroscopic instruments, Raman spectrometry, 

MALDI-TOF-MS (matrix-assisted laser desorption/ionization 

time-of-flight mass-spectrometry), UV (ultraviolet) 

spectrometry, IMS (ion mobility spectrometry)  and other rapid 

analytical devices, have become a promising alternative to 

traditional chromatography-based methods (e.g., GC-MS, LC-

MS). Some advantages of these rapid analytical spectroscopic 

methods include, 1) less or no need for complex sample 

preprocessing; 2) require less sample amount; and 3) faster scan 

speed. More importantly, when combined with statistical 

methods, these instruments can improve their analytical 

accuracy with more data. 

B. Remote Sensing and Edge Computing 

In this era of IoT (internet of things), edge computing has 

been proposed to improve various remote sensing applications. 

Edge computing is an extension to traditional cloud computing, 

where end-point sensors (e.g., spectroscopic profiling 

instruments) are endowed with some computational power and 

artificial intelligence. In this way, the edge-side devices can act 

autonomously and independently, reducing the computation 

and communication burden of the central server. 

In food/pharmacy companies, remote sensing by 

spectroscopic profiling instruments is a cost-effective way for 

both production-line monitor and government surveillance. 

However, one unique challenge is high-performance algorithms, 

which can suit the limited computational power and cost-

effective edge-side hardware.   

C. Fusion of Multi-modal Data 

Another challenge in the spectroscopic profiling-based 
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remote sensing is how to handle multi-modal data, which come 

from different spectroscopic instruments (e.g., RAMAN + UV) 

based on different physio-chemical principles. This 

phenomenon of multi-modality also exists in other domains. 

For example, in healthcare, physicians use multiple modalities, 

such as MRI (Magnetic Resonance Imaging), CT (Computed 

Tomography), microscope, DNA sequencing, etc., to give a 

comprehensive clinical judgment. Another example is the self-

driving car, where different types of sensors are used together, 

e.g., video cameras, radar, ultrasonic sensors and LIDAR (Laser 

Imaging Detection and Ranging). Even in our daily life, we 

inference on the physical world with our multiple biological 

senses, i.e., vision, hearing, touching, etc.  

In this paper, the fusion of remote sensing data from Raman 

and UV modalities is addressed. 

D. Manuscript Structure 

In the following manuscript, we will first introduce a specific 

dataset from spectroscopic profiling-based remote sensing. 

Then, we will propose a multi-modal spectroscopic data fusion 

and classification algorithm. Finally, we will conduct a case 

study on the dataset and compare our algorithm with peers. 

II. DATASET AND PROBLEM STATEMENT 

A. Test Subjects 

The test subject is radix astragali (astragalus root). Chinese 

name: 黄芪 (huang-qi). Radix astragali is a widely used 

medicinal herb in traditional Chinese medicine (TCM). It is 

often used to treat diabetes and cardiovascular diseases. 

The radix astragali samples are provided by a TCM 

pharmaceutical manufacturer. The radix astragali is a main 

ingredient in one of their patent drugs. 

 The radix astragali samples come from four different 

provinces, i.e., Neimeng (north China), Sichuan (southwest 

China), Shanxi (northwest China) and Gansu (northwest 

China). Herbs from different regions could have slightly 

different medicinal effectiveness, due to different cultivation 
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conditions, climate, and environment. 

The purpose of the case study is to discriminate the 

geographic source of radix astragali raw materials.  

B. Instrument 

Instruments: Both Raman and UV are used to profile the 

radix astragali samples. The Raman spectrometer used in this 

study is ProttezRaman-D3, manufactured by Enwave 

Optronics, US. The ultraviolet-visible absorption spectrum is 

generated by a T6 ultraviolet-visible spectrometer, 

manufactured by Purkinje General Instrument, China.  

Procedures: Each radix astragali sample is first processed in 

a high-speed grinder for 10 min at 25,000 rpm. Every 3 g of the 

grinded powder is solved in 30 mL ethanol solution. Then, the 

mixture is stirred for 1 h at 100℃ with reflux. Let the mixture 

cool down and then filter it. Finally, test with Raman and UV 

spectrometers. The parameters for Raman are as follows. Laser 

wavelength: 785 nm. Laser power: 450mW. Exposure time: 5 

s.  

C. Dataset 

Totally 160 radix astragali samples are tested. Each category 

(province) has 40 samples.  

The Raman and UV spectra are organized into two CSV 

(comma-separated value) files. Each row is one sample. The 

first column is the Y label (0-Neimeng, 1-Sichuan, 2-Shanxi, 3-

Gansu). The rest of the columns are Raman wavenumbers or 

UV wavelengths. Data file summary: 

 

7044.txt - Raman 

  X meaning: Raman shift / wave number 

  X range: 100 ~ 4278 cm-1 

  Resolution: 2cm-1  

 

7143.txt - UV 

  X meaning: wave length 

  X range: 200 ~ 800 nm 

  Resolution: 1 nm 

 

Each Raman spectrum has 2091 dimensions, and each UV 

spectrum has 602 dimensions. Each dimension is also called 

an attribute (computer science term), a feature (a machine 

learning term), or a variable (a statistical term). In this 

paper, we use these terms interchangeably. 

D. Problem Statement 

The unique challenges in this research come from two 

aspects. 1) One challenge is related to the domain data. The 

spectroscopic data in this study is both multi-modal (Raman and 

UV) and highly dimensional (2091 and 602 dimensions), which 

require effective data fusion and dimensionality reduction 

techniques. 2) The other challenge comes from the endpoint 

hardware limitation. In remote sensing, the edge-side sensor 

uses cost-effective hardware (unpowerful processor, small 

memory, less cache, etc.), which has limited computation 

power. This requires specially tailed and high-performance 

algorithms.  

Therefore, this study will propose a high-performance edge-

side classification algorithm on the multi-modal spectroscopic 

dataset. The algorithm is based on NNRW (Neural Network 

with Random Weights). NNRW provides a faster training 

mechanism than GD (gradient descent)-based methods.   

III. THEORY AND METHOD 

A. Neural Network with Random Weights 

The last two decades sees the renaissance of artificial neural 

network (ANN) models. Thanks to deep learning techniques, 

ANN can go deeper and solve more complex problems. The 

effectiveness of ANN is guaranteed by the universal 

approximation theorem (UAT). UAT states that a neural 

network with one hidden layer (e.g., a perceptron model), when 

properly parameterized, can approximate any continuous 

function on the compact subsets of Rn. 

Traditionally, ANN is mostly trained by the back propagation 

(BP) method, which is based on GD (gradient descent). BP and 

GD are very successful in the machine learning field. They have 

been extensively used in training very deep ANN models. 

However, they also have several shortcomings, including: 1) 

may stuck in local minima, 2) long convergence time due to 

gradient-descent iterations, and 3) sensitive to hyper-

parameters (e.g., learning rate, batch size, and initialization 

strategy). 

As a complement to BP-based ANN, NNRW has been 

proposed. In NNRW, all (or part of) the weights are randomly 

assigned and don’t need to be finetuned or trained by gradient 

descent-based iterations. In the next part, we will introduce the 

popular RVFL (Random Vector Functional-Link) family. 

RVFL used a mixed feed-forward ANN architecture (Fig.  1). 

It has an input layer, an output layer, and a hidden layer (a.k.a., 

enhancement layer).  

Let’s denote Θ(1) as the weight matrix between the input and 

hidden layers. x = [x0  x1 x2 …]T is the input vector.  x0 (always 

equals to 1) is a constant node added for the bias parameter. a(2) 

= [a1
(2)  a2

(2) …]T is the activation vector of the hidden layer 

nodes. z(3) = [z1
(3)  z2

(3) …]T is the output vector.  

 in the hidden layer means it uses a non-linear activation 

function (e.g., sigmoid). The basic assumption of RVFL is that 

Θ(1) is independent of the dataset, and be set randomly, usually 

using a uniform random distribution on (-1, 1). Following the 

forward propagation rule, we have:  
(2) (1,2)( )a g x=     (1) 

Then, we concatenate x and a(2) as one vector v. 

T
(2) (2)

0? 1 2 1 2 (1)
   

( )

x
v x x x a a

g x

 
 =   =     

    (2) 

Define Θ(2) as the weight matrix between v (input layer and 

hidden layer combined) and z (the output layer). It should be 

noted that, in RVFL the output layer doesn’t use any activation 

function. v is directly connected to the output nodes. Therefore,  

(3) (2) (2)

(1)( )

x
z v

g x

 
=  =   

 
   (3) 
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Because the random weight matrix Θ(1) is already known, we 

only need to solve Θ(2). 

The above equations (1)(2)(3) are related to one sample x (a 

n-dimensional column vector). We can further extend the 

equations to the entire dataset, e.g., we use capitalized X (an 

m n matrix, m is the sample size, n is the feature number) to 

denote the dataset. Then, we have:  
(1)[ ( )]V X g X=    (4) 

(2) (1) (2)[ ( )]Z V X g X=  =    (5) 

We can make a transformation to equation (5): 
(2) (2)( )T T TV Z V V V V=  =    (6) 

1 1 (2) (2)( ) ( ) ( )T T T TV V V Z V V V V− −=  =     (7) 

( )TV V  in equation (6) is a square matrix, so we can 

calculate its inverse 
1( )TV V −

 in equation (7). 

Finally, we have: 
(2) 1( )T TV V V Z V Z− + = =   (8) 

Denote 
1( )T TV V V V+ −= . V +

 is the pseudo-inverse 

matrix, a.k.a., the Moore–Penrose inverse. It is a generalization 

of the ordinary inverse matrix. V +
 computes the L2-norm 

(least squares) best fit solution to the linear equation system 
(2)V Z = . 

One advantage of RVFL is that we can directly compute the 

final solution, without any gradient-based iterations. Another 

advantage is that RVFL combines both linear (provided by the 

direct link between v and z) and non-linear (provided by the 

sigmoid activation in the hidden layer) capabilities. This 

improves the model’s fit power and generalization capability. 

 One major disadvantage of RVFL is that, it cannot handle 

high-dimensional dataset efficiently. Let n be the feature 

number of x, l be the hidden layer node number. Then 
TV V  

will be a (n+l) × (n+l) matrix. Calculating its inverse can have 

a huge computational cost. 

 

output layer

x0

x1

x2

input layer

hidden layer

a1
(2)

a2
(2)

z2
(3)

z1
(3)

Θ(1) Θ(2)

 
Fig.  1. Architecture of Random Vector Functional-Link (RVFL) 

Network. The node connections covered by Θ(1) and Θ(2) are indicated 

by the dotted-shadow bands. 

Besides RVFL, recent studies on WANN (Weight Agnostic 

Neural Network) and neuro-evolution are also closely related to 

NNRW. Based on UAT, WANN tries to find an ANN 

architecture, which can greatly outperform pure chance even 

with random weights. Neuro-evolution tries to find the best 

architecture candidate by searching the network topology space 

by algorithms such as GA (genetic algorithm).  

B. Multi-modal Spectroscopic Data Classification using 

NNRW 

In addressed to the two aforementioned challenges (one is 

multi-modal data fusion and dimensionality reduction; the other 

is high-performance edge-side algorithm), a multi-modal 

spectroscopic data classification pipeline is proposed (Fig.  2). 

The pipeline contains the following procedures. 
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Fig.  2. Multi-modal Spectroscopic Data Classification Workflow 

using NNRW 

1) Feature Scaling 

In this pipeline, feature scaling is required by the following 

feature selection procedure, based on the Elastic Net [1]. 

Feature selection methods, such as LASSO (least absolute 

shrinkage and selection operator) [2] and Elastic Net, are 

essentially based on linear regression. The regression 

coefficient (absolute value) of each feature represents its 

importance. For spectroscopic profiling data, the magnitudes of 

the features vary significantly, and determine the regression 

coefficients. Therefore, it is necessary to rescale the features to 

a similar range. In this study, variable normalization is used for 

feature scaling: '
x

x




−
= . 

2) Feature Selection 

In this pipeline, feature selection serves several purposes:   

• Reduce data dimensionality and remove irrelevant 

features. This helps reduce the overfitting risk of the 

dataset and improve model generalization ability.  

• Improve the explainability of the algorithm. By selecting 

only a few important features, the domain expert can 

better interpret the chemical meanings of the 

spectroscopic data. 

• Improve the performance of the NNRW model. In 

NNRW, the calculation of the inverse matrix 
1( )TV V −

 

is quite expensive. The matrix size is decided by the 

feature numbers.  

 

For the above three reasons, feature selection is highly 

recommended for spectroscopic data, such as Raman (2091 

features) and UV (602 features). Other high-dimensional 

spectroscopic data, such as MALDI-TOF (20k ~ 40k features), 

can also benefit from feature selection.  

The feature selection algorithm in this study is Elastic Net. 

Elastic Net is a linear regression model, which tries to minimize 

the following cost function:  

( ) ( ) 2 2

1 21 0 1 1

1 2

1
( ) [ ( ) ] | |

m n n ni i

j j j ji j j j

L penalty L penaltyMSE

J x y
m

    
= = = =

 = − + +     

The cost function uses both L1 and L2 penalties for 

regularization, which equals to a combination of LASSO and 

ridge regression. The L1-norm penalty has a sparse effect, 

which tends to generate more zero-valued coefficients.  

3) Neural Network with Random Weights 

After feature selection, only a small subset of features is kept 

for each modality, e.g., Raman or UV.  Features in these subsets 

have the most discriminative power among the different 

categories (Y labels). These selected features are then 

concatenated into one long feature vector. 

The final step of the pipeline is to train a classifier based on 

the feature vectors after data fusion. As discussed before, the 

NNRW is a promising model to implement high-performance 

edge-side classification algorithm. Rather than the full-fledged 

RVFL model, we choose the more efficient variant - ELM 

(Extreme Learning Machine). As seen in Fig.  3, ELM is a 

simplified version of RVFL, where the direct link between x 

and z is removed. According to the theory of ELM, the weight 

matrix Θ(1) between the input and hidden layers need not to be 

learned, and is independent of specific datasets. By UAT, with 

enough hidden nodes, ELM can fit any continuous function in 

the specific domain.   
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Fig.  3. Architecture of Extreme Learning Machine (ELM).  

 

To train/fit ELM, the weight matrix Θ(1) is first randomized, 

e.g., from a uniform random distribution. Then, we solve the 

weight matrix Θ(1) by equation (8):
(2) 1( )T TV V V Z V Z− + = = . 

Concerning this equation, 
(1)[ ( )]V X g X=   for a 

typical RVFL, whereas 
(1)( )V g X=   for ELM.  

IV. CASE STUDY AND EXPERIMENT 

A. Result of Our Method 

Based on the proposed algorithm pipeline (Fig.  2), the multi-

modal spectroscopic data of Raman and UV are analyzed.  

1) Feature Selection and Data Fusion 

Table 1 shows the feature selection result from Elastic Net. 

The averaged spectrum and feature importance chart are 

provided. After the Elastic Net regression, 48 and 32 features 

are selected (with non-zero regression coefficients) from the 

Raman and UV dataset respectively. Chemical interpretations 

of the top-n selected features are also provided. The final 

concatenated vector has 80 (48+32) features. 

2)  Classification 

This case study uses ELM for classification. ELM has one 

hyper-parameter: the hidden node count (denote as L). 

According to UAT, the fitting power and complexity of the 

Table 1. Feature selection result and chemical explanation for the top-5 selected features (Raman shifts / UV wavelengths) 

Modality 
Feature importance chart 

(bar height = coefficient absolute) 

Selected 

feature 

number 

Top-3 selected features 

and their chemical 

explanations 

Raman 

 

 

48 

Raman shifts / wavenumbers 

(cm-1): 1264, 1804, 3112 
 

Functional group/ vibration: 

υ(CC) alicyclic, aliphatic 

chain vibrations,  υ(C=O), υ
(O-H) 

UV 

 

 

32 

UV wavelengths (nm): 

794, 376, 287 

 

Chromophore/ electronic 

excitation: n  →  π* 
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model is determined by L. A bigger L means better expressive 

power, but longer training time and higher over-fit risk. A 

smaller L means a simpler model, but insufficient fitting power 

(prone to under-fit).  

In order to decide the optimal L, cross validation is performed. 

The dataset (160 samples × 80 features) is randomly split into a 

training set (80%) and validation set (20%). For different L 

values, the accuracies (acc) on the training set and validation set 

are measured. The training time (ms) is also recorded.  

The above cross validation process is performed 20 times. 

The averaged curves are shown in Fig.  4. Several facts can be 

observed. 1) The training and validation accuracies increase 

with hyper-parameter L, as the model’s fitting power is 

improved. 2) The accuracy increases rapidly at the (0, 10) range. 

Then, it slowly reaches the peak at around L = 30. 3) After the 

peak, the validation accuracy is stabilized, without obvious 

drop. This means the model doesn’t become over-fit even with 

very large L. This shows that NNRW has a good generalization 

ability and is resistant to over-fitting. 4) The training/fitting 

time of NNRW increases almost linearly with L. This is due to 

the matrix operations in solving NNRW. A bigger L means 

larger matrices and longer computation time.    

 

  

  
Fig.  4  The curves for ELM. The x axis means the hidden layer node 

number L. (1) The curve of training/validation accuracies against L. 

(2) The curve of training/fitting time (ms) against L. train_acc = the 

training accuracy. val_acc = validation accuracy. The time is 

measured by Python’s built-in time module. 

Based on the above curves, we choose L = 30 as the optimal 

hidden layer size. At L = 30, train_acc = 99.6%, val_acc = 

96.3 %. Model fitting time = 0.372 ms. 

B. Comparison with Peer Methods 

The following machine learning models are analyzed and 

compared with NNRW. 1) MLP (multi-layer perceptron) with 

BP (back-propagation). We use an MLP with one hidden layer, 

which has the similar architecture as ELM. This MLP also has 

a hyper-parameter L (hidden layer nodes). 2)  RBF (radial basis 

function)-kernel SVM (support vector machine). SVM is a 

widely used classification model. We use RBF-kernel SVM 

other than linear-SVM, as ELM is non-linear. RBF-kernel SVM 

has hyper-parameter 
2

1
=

2



 that controls the gaussian 

distribution’s deviation. 3) Decision tree classifier (DTC). The 

decision tree has a hyper-parameter D (maximum tree depth). 

A bigger D gives the decision tree more expressive power to fit 

complex non-linear functions.    

The curves of the three peer classification models are shown 

in Fig.  5, Fig.  6, and Fig.  7. The performance data is measured 

by the same cross-validation strategy on the same hardware.  

For MLP (Fig.  5), the curves have similar shapes as ELM. 

The best cut-off point for hyper-parameter L is around 20. At L 

= 20, train_acc = 99.1%, val_acc = 98.0 %. Model fitting time 

= 57.9 ms.  

For SVM (Fig.  6,), the accuracies increase with γ ( 2=1/(2 ) 

). A bigger γ means smaller σ (gaussian distribution deviation) 

and better fitting power. When γ increases, the accuracy goes 

up and the training time goes down. At γ = 0.0003 (σ = 41), 

SVM arrives at the peak accuracy. train_acc = 98.8%, val_acc 

= 98.4 %. Model fitting time = 2.033 ms. 

For DTC (Fig.  7), its accuracy improves with D. After D 

reaches 4, its accuracy and training time stabilize. That means, 

for this dataset, DTC needs maximumly 4 levels to reach its best 

performance. At D = 4, train_acc = 99.6%, val_acc = 92.8 %. 

Model fitting time = 3.351 ms. 

 

 

 
Fig.  5 The curves for MLP. The x axis means the hidden layer node 

number L.  
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Fig.  6 The curves for RBF-kernel SVM. The x axis is the hyper-

parameter 2=1/(2 )  . 

 

 

 
Fig.  7 The curves for decision tree. The x axis is the tree maximum 

depth D.  

Table 2 shows the summary of different models. Several 

facts can be observed. 1) Considering the training and 

validation accuracies, all models are very close. 2) SVM 

(RBF-kernel) has the worst training accuracy, but the best 

validation accuracy. The difference between the two 

accuracies are the smallest. This indicates SVM has an 

excellent generalization power. 3) Contrary to SVM, DTC has 

the best training accuracy, but the worst validation accuracy. 

This indicates insufficient generalization power for DTC. 4) 

The training/fitting time of NNRW is by far the shortest. It is 

almost 10 times smaller than SVM and DTC, and 100 times 

smaller than MLP. 5) The training/fitting time of MLP is the 

longest. This is due to the BP training algorithm that involves 

gradient-based iterations. 

In conclusion, NNRW shows an impressive performance 

and speed advantage, while maintaining a decent accuracy. It 

is a promising candidate for edge-side classification tasks. 

 
Table 2  Comparison of classification models 

Model 
Training 

accuracy 

Validation 

accuracy 

Training 

time (ms) 

NNRW 99.6% 96.3% 0.372 

MLP 99.1% 98.0% 57.9 

SVM 98.8% 98.4% 2.033 

DTC 99.6% 92.8% 3.351 

best: NNRW, DTC SVM NNRW 

worst: SVM DTC MLP 

 

 

V. DISCUSSION 

 

Discussions and future work related to this study are as 

follows. 

A. Autonomous Online Learning 

In data-driven and machine learning-based applications, 

model training is a computationally intensive task. This study 

shows that the neural network model with random weights 

(NNRW) can achieve a much better performance (only use 1/10 

or 1/100 training time) than mainstream peer models, without 

compromising its prediction accuracy.   

The NNRW-based classification method will facilitate edge-

side online learning and self-training. Through online learning, 

the edge side can quickly evolve and adapt to the newly 

generated data.   In this way, autonomous and intelligent agents 

can be achieved.     

B. Ensemble Learning with NNRW 

For NNRW, the accuracy and performance are two 

conflicting factors. We cannot improve one without sacrificing 

the other (Fig.  4). The balance between the two factors is 

modulated by the hyper-parameter L (hidden layer nodes).  

In the case study, NNRW gets the best accuracy at L = 30. 

However, we can take a smaller L to further boost its 

performance/speed, at the expense of certain accuracy loss. 

This means NNRW becomes a “weak” but “faster” classifier, 

which could benefit ensemble learning scenarios. In ensemble 

learning, the boosting family uses multiple weak classifiers. 

Each weak classifier emphasizes on the misclassified samples 

from the previous classifier and tries to minimize the overall 

bias. With the extremely fast training speed, the weak version 

of NNRW can be used to build efficient boosting models.    

C. Data Fusion with other Spectrscopic Profiling Modalities 

Multi-modality is a pervasive phenomenon. The various 

spectroscopic profiling instruments have further extended our 

biological senses. Because each spectroscopic modality only 

portrays a specific aspect of the physical object, multi-modal 

data fusion gives a more comprehensive and complementary 

portray for the test object. 

This study uses two spectroscopic profiling modalities, i.e., 

Raman and UV. Each one gives a different physio-chemical 

interpretation. As shown in Table 1, Raman spectrum reveals 

vibrational function groups and UV reveals molecule 

chromophores. Besides Raman and UV, TOF MS is also widely 

used. TOF MS profiles the particle m/z values, with more 

dimensions and higher resolutions. Data fusion with these 

modalities can further improve the model accuracy. 

SUPPLEMENT 

The dataset, source code and case study report have been 

uploaded to the public repository.    

DOI: 10.21227/69z3-aw19 

http://dx.doi.org/10.21227/69z3-aw19
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URL: http://doi.org/10.21227/69z3-aw19 

License: Creative Commons Attribution (CC-BY 4.0) 

File list:  734b.csv – the data set in CSV (comma-separated 

value) format; case_study.pdf – the Python code and Jupyter 

notebook for compressed sensing; tutorial.mp4 – demo and 

tutorial video; src.zip – core source code of the prototype 

system. 

A demo version of the prototype system is hosted at 

http://spacs.brahma.pub/CS. 
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